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ABSTRACT

" Results are presented from a probability-based weather forecast contest. Rather than evaluating the absolute
errors of nonprobabilistic temperature and precipitation forecasts, as is common in other contests, this contest
evaluated the skill of specifying probabilities for precipitation amounts and temperature intervals. To forecast
optimally for the contest, both accurate forecasts and accurate determination of one’s uncertainty about the
outcome were necessary. The contest results indicated that forecasters over a range of education levels produced
skillful forecasts of temperature and precipitation relative to persistence and climatology. However, in this
contest forecasters were not successful in assessing the uncertainty of their maximum or minimum temperatures
from day to day, as measured by the correlation of interval width and absolute error. Though previous experiments
have shown more optimistic results, the seasonal variation of forecast uncertainty can account for much of the
observed correlation, suggesting that day-to-day assessment of forecast uncertainty may be more difficult than
previously believed. It is argued that objective methodologies should be developed to quantify uncertainty in

forecasts.

1. Introduction

This article describes a probability-based weather
forecast contest conducted during the spring semester
of 1994 at Cornell University and what was learned
about forecast uncertainty following an analysis of the
contest results. The intent of this contest was to give
students experience in making probabilistic weather
forecasts and to learn about probability forecasting.
The contest was unusual in that probabilistic forecasts
were made for both temperature and precipitation.
Many nonprobabilistic contests exist or existed, such
as at the University of Virginia (Colucci et al. 1992)
and the National Forecast Contest (F. Gadomski 1994,
personal communication). Other contests require
contestants to make probability forecasts for precipi-
tation, yet for short-range forecasts, contestants are
typically required to make nonprobabilistic forecasts
of temperature, such as tomorrow’s maximum (max)
and minimum (min) temperatures (Bosart 1983;
Sanders 1986; Croft and Milutinovic 1991).

Probabilistic temperature forecasts are issued less
frequently but are not inherently confusing or hard to
formulate. Winkler and Murphy (1979, hereafter
WM79) outline a number of ways of expressing prob-
abilistic temperature forecasts, including “fixed prob-
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ability central credible intervals.” For a 50% central
credible interval forecast, the two temperatures denote
the upper and lower quartiles of the probability distri-
bution for that forecast—that is, the chance the tem-
perature is below the lower limit or above the upper
limit are each 25%. Thus, a typical forecast would be
“tomorrow’s high temperature 58°-64°F.” Typical
50% interval widths for temperature at a 1-day projec-
tion are 6°-8°F. Through the width of the interval,
the forecaster can communicate daily the uncertainty
in a temperature forecast, which should be useful in-
formation for many citizens and businesses. A wide
range denotes greater than average uncertainty in the
forecast—for example, a day when the forecaster is un-
sure whether a warm front will remain to the south or
move north of the forecast location. Conversely, a nar-
row range denotes less than average uncertainty, such
as might be specified during a quiescent summer pat-
tern. In addition, if one assumes the probability dis-
tribution for the forecast temperature is Gaussian or
if other credible intervals are specified (e.g., the 80%
interval), the probabilities of exceeding other colder
or warmer temperatures may be easily estimated.
Probabilistic temperature forecasts can be useful
since they provide more information than the tradi-
tional “point” temperature forecast; the interval quan-
tifies a forecaster’s uncertainty about the temperature
being forecast. Murphy and Winkler (1979) outlined
a rationale for probabilistic temperature forecasts and
suggested the National Weather Service (NWS) begin
testing such an approach with the eventual goal of na-
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tionwide implementation. There are good reasons for
expressing forecasts of temperatures probabilistically.
First, the chaotic nature of tropospheric dynamics does
not permit exact specification of future temperatures
any more than for other variables. This fact constitutes
the fundamental meteorological justification for prob-
abilistic temperature forecasts. Second, many users
would find such forecasts useful, since many real-world
decisions are based on temperature forecasts. Specifying
probabilities associated with future temperatures per-
mit better decisions in the sense that greater economic
value is realized relative to otherwise comparable fore-
casts that do not contain a quantitative expression of
uncertainty (e.g., Murphy 1977; Krzysztofowicz 1983).
Despite the merits of probabilistic temperature fore-
casts, the format for public dissemination of forecast
temperatures has changed little in the past three de-
cades. NWS forecasts are nonprobabilistic, such as a
city temperature forecasts for “high: 62°F,” or they are
at best pseudoprobabilistic, such as a zone forecast for
“tomorrow’s high in the mid-60s.” Further, such pseu-
doprobabilistic forecasts are intended primarily to
convey geographic variations of temperature rather
than forecast uncertainty. Broadcast meteorologists
have been even more reluctant to embrace probabilistic
temperature forecasting; most television meteorologists
forecast specific highs and lows for each of the next 5
days, although by the fifth day 10°-20°F errors are not
uncommon. Either through inertia or fear of public
reaction, probabilistic temperature forecasts are the
exception and not the rule. However, for forecasts for
a specific location, operational implementation of the
simplest fixed-probability central credible interval
forecasts could be achieved “transparently” and with
minimal confusion; each forecast would consist of only
a temperature range with the probability information
expressed implicitly (through a prespecified fixed-
probability central credible interval such as 50%).
Probabilistic precipitation forecasts are regularly is-
sued by the NWS in terms of a probability of precip-
itation (POP). Worded forecasts are typically used to
convey the type and expected intensity of precipitation.
As with temperature forecasts, calibrated quantitative
assessment of precipitation probabilities by category
(e.g., 20% probability of 0.0 in.—-trace, 50% probability
of 0.01-0.10 in., 20% probability of 0.11-0.25 in., 10%
probability of 0.26-0.50 in.) are economically more
valuable than a fixed forecast of precipitation amount.
With such a forecast, an educated decision maker can
more accurately assess the likelihood of damaging
weather and assess the appropriate action (Krzyszto-
fowicz et al. 1993). Model Output Statistics (MOS)
(Dallavalle et al. 1992), produce probabilistic quan-
titative precipitation forecasts but they are routinely
distributed only in a simpler, nonprobabilistic format.
A university contest provides a natural test bed for
exploring unconventional forecasting concepts. Since
forecasts from the contest are not disseminated to the
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public, the only thing at risk is students’ pride over
unskillful results. During the spring semester of 1994,
we conducted a forecast contest for probabilistic, 1-
day forecasts of max and min temperature and precip-
itation by category. In addition to giving students prac-
tice, this contest was designed to explore some inter-
esting questions: For example, can contestants set
credible intervals of appropriate widths? Are variations
in the widths of the intervals or the spread of precipi-
tation probabilities across forecast categories positively
correlated with forecast error, indicating skill in as-
sessing uncertainty? This paper will review the results
from this contest and will reexamine previous experi-
ments in probabilistic forecasting in light of this con-
test’s results. Further, this paper discusses the general
difficulty in assessing forecast uncertainty day to day
and the possible approaches to improve assessments
of forecast uncertainty. It is hoped that the discussion
of this contest and its results will encourage similar
probabilistic contests and experiments elsewhere.

Section 2 will outline the contest format and scoring
rules; section 3 provides an analysis of this contest’s
results as well as a reanalysis of similar prior experi-
ments. A discussion follows in section 4, with emphasis
on possible approaches to aid the forecaster in quan-
tifying uncertainty. Conclusions are provided in section
5. Since NWS forecasts are typically expressed in En-
glish units of degrees Fahrenheit and inches of precip-
itation, these units are retained in this paper.

2. Description of the forecast contest

Twenty-nine entrants participated in this extracur-
ricular forecast contest for the spring semester of 1994
forecasting the next day’s max and min temperatures
and precipitation amount probabilistically. Of these
29, 12 produced forecasts consistently throughout the
semester; the increasing workload and discouragement
with early unskillful forecasts led many to stop making
forecasts. Contestants ranged in education level from
Ph.D. to freshman, and two of the forecast entrants
were automated schemes, one based on MOS and the
other a blend of persistence and climatology. The con-
test ran each weekday over 12 weeks and 3 days, to-
taling 63 days of forecasts. Forecasts were required to
be entered by 1900 LST each forecast day, and the
forecast period of record was 0800 LST the next day
to 0800 LST the following day. The contest was also
run during the fall semester of 1994 with a larger (and
different) set of contestants; however, analysis of the
contest results will focus mainly on the first semester.
Verification data were taken from Cornell University’s
Game Farm Road weather station. This site often re-
ceived a cold drainage flow from nearby Mt. Pleasant
on clear nights, thus making its min temperature cli-
matology substantially different from nearby MOS sta-
tions at Binghamton and Syracuse.

Precipitation probabilities were forecast for each of
the six MOS precipitation amount categories (0.0 in.—
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trace, 0.01-0.09 in., 0.10-0.24 in., 0.25-0.49 in., 0.50-
0.99 in., =1.00 in.). Probabilities were required to be
rounded to the nearest 10% and were entered as integers
summing to 10; thus, a forecast of 9-1-0-0-0-0 was
acceptable, but the program would not allow 8.5-1.5-
0-0-0-0. All forecasts are referenced against a baseline
“persistence” forecast. For precipitation this used the
previous day’s rainfall amount. If no rainfall occurred
(category 1), then the persistence forecast was 10-0-
0-0-0-0. Similarly, if the previous day verified category
3, the persistence forecast was assigned the forecast 0-
0-10-0-0-0.

Penalty points for precipitation forecasts were as-
sessed using the ranked probability score, or RPS (Ep-
stein 1969; Murphy 1971). Daan (1985) discusses the
merits of the RPS relative to other scoring methodol-
ogies. Using a forecast distribution vector of precipi-
tation probabilities y, a cumulative distribution vector
Y is defined with components

m
szzyj, m=1-.-:6.

J=t

(1)

Similarly, from the vector of the observations 0, acu-

mulative distribution vector O is also generated:
B ,

O,=20, m=1-::6, (2)

Jj=1

where o; = 10 if precipitation occurred in the jth cat-
egory and is zero otherwise. The RPS is the squared
difference between the forecaster’s cumulative distri-
bution vector and the observed cumulative distribution
vector

6
RPS = 3 (Y — On)’.

m=1

3)

An example of the calculation of the RPS is given in
Table 1. Note that because probability forecasts are
entered as integers from O to 10, these RPS scores are
100 times higher than if probabilities were issued in
the range from 0 to 1.

Temperature forecasts were entered as 50% fixed-
probability central credible intervals as in WM?79. Up-
per and lower limits were entered for both the max

FORECASTING VOLUME 10

and min temperature forecasts. The nonprobabilistic,
reference persistence forecasts used the previous day’s
minimum and maximum temperatures and a zero in-
terval width. Temperature interval forecasts were pe-
nalized for wide intervals and for verifications outside
the forecast intervals. Denoting the lower cutoff for the
forecast temperature limit L, the upper limit U, and
the verification temperature 7', the penalty points P
were assessed using

P(L, T, U)
ML-T)+(U-L+1)if T<L
={U-L+1 if L<T<U. (4)

4T-U)+(U-L+1)if T>U.

Winkler (1972) showed that this penalty function is
strictly proper (i.e., cannot be “hedged” or “gamed”)
assuming the subjective forecast distribution is nor-
mally distributed. Though forecaster’s distributions
were often not normally distributed, a strategy for
gaming in these situations was not obvious.

Forecast skill .S was calculated by comparing a con-
testant’s accumulated penalty points P, to reference
penalty points from persistence P, and perfect forecasts
P perf+

s=( T P3P,
ZPperf_EPp

For precipitation forecasts, penalty points are just
the RPS, so skill was calculated by summing the
appropriate RPS values over the period of interest—
for example, a week or the semester to date. Perfect
precipitation forecasts have RPS = 0. Temperature
skill scores were also calculated using (5). Unlike
precipitation forecasts, a perfect temperature fore-
cast with zero interval width was assessed | penalty
point, and thus, 2 Py, = n, where 7 is the number
of days in the evaluation period. To rank contes-
tants, an average of max, min, and precipitation
skill was tabulated weekly for the previous week and
for the semester to date.

Sample results from the contest are shown in Fig.
1. As shown, the output is divided into three sec-

)100%. (5)

TABLE 1. An example of the calculation of the ranked probability score given a forecast distribution y and the observed distribution o.

Precipitation category 0.0 in.—trace 0.01-0.09 in. 0.10-0.24 in. 0.25-0.49 in. 0.50-0.99 in. >1.0in.
Forecast distribution y (in tens) 6 3 1 0 0 0
Observed distribution o (in tens) 0 10 0 0 0 0
Cumulative forecast distribution Y 6 9 10 10 10 10
Cumulative observed distribution O 0 10 10 10 10 10
(Y, — 0,0 36 1 0 0 0 0

J
RPS = 3 (Y, — O,) =37
m=1
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PLACE NAME CUMULATIVE WEEKLY MAX TMP MINTMP PRECIP TOTMAX TOT MIN TOT PRE
SKILL SKILL  SKILL SKIL  SKILL SKLL SKILL SKILL
1 ART2DE2 623 655 791 689 488 593 597  67.9
2 DOGBERT 619 695 788 715 583 575 624 657
3 CAPT. ENSEMBLE 608 623 759 548 560 622 535 667
4 RIDGE 604 679 820 640 576 587 57.7 648
5  HOCKEY PUCK 583 705 766 785 564 595 517 637
6  WXBUNNY 577 674 848 553 621 60.8 468 655
'8 MOSCASTER 541 132 236 183 447 608 400 615
12  ITH STOCASTER 329 159 11 133 333 171 375 441
27  PERSISTENGE 0.0 0.0 0.0 0.0 00 0.0 0.0 0.0
THE FOLLOWING ARE THIS WEEK'S MEDAL WINNERS:
GOLD MEDAL - HOCKEY PUCK
SILVER MEDAL - DOGBERT
BRONZE MEDAL - RIDGE
BEST TEMPERATURE FORECASTER - HOCKEY PUCK
BEST PRECIPITATION FORECASTER - WXBUNNY
VERIFYING OBSERVATIONS
TUE24 WED24 THU24 FRI24 SAT-24
0BS MAX TEMP 85 80 53 69 56
0BS MIN TEMP 59 38 37 a4 M
PRECIP CAT 3 1 2 3 5
DAY BY DAY ANALYSIS C
FORECASTER TUE24 WED24 THU-24 FRI24 SAT-24
PERSISTENCE MX TMP PENALTY 73 21 109 65 53
MAX TEMP FCST. 67 /67 85/85 80/80 53/53 69/69
MN TMP PENALTY 45 69 89 13 17
MINTEMP FCST. 48/48 55/55 59/59 38/38 37/37
PRECIP PENALTY 0 200 100 200 300
PRECIP. FCST.  00X000 00X000 OOX000 X00000 OX0000
HOCKEY PUCK  MX TMP PENALTY 19 10 20 23 7
MAX TEMP FCST. 82/76 86/81 63/56 65/59 62/56
MN TMP PENALTY 5 24 8 7 10
MINTEMP FCST. 59/55 49/42 44/37 44/38 47/42
PRECIP PENALTY 33 140 50 33 93
PRECIP. FCST. 233200 044200 721000 023320 023320

F1G. 1. Abbreviated sample output from the forecast contest. Section A of the output summarizes the overall ordering
of contestants along with summary information for the semester and the previous week. Section B indicates the best
performers during the previous week. Section C gives a detailed breakdown of daily forecasts.

tions: the top section summarizing the overall con-
test rankings, the middle section indicating the
weekly contest winners, and the last section provid-
ing a detailed description of the forecast errors day
by day. In section A of Fig. 1, column 1 lists the
overall ranking of the contestants (all three forecast
variables for the semester to date), and column 2

indicates the associated name of the forecaster
(pseudonyms used here). Column 3 indicates the
overall skill of the forecaster, and column 4 indicates
the skill during the previous week, which is used to
determine the weekly winners shown in section B
of Fig. 1. The remaining columns detail the weekly
skill of max, min, and precipitation forecasts (col-
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umns 5-7) and their skill for the semester to date
(columns 8-10).

The next section (B) summarizes the best forecast
performance during the previous week. The contestants
with the top three overall skill scores are awarded the
symbolic medals, and the best temperature forecaster
(max and min combined) and best precipitation fore-
caster are noted.

Section C of Fig. 1 displays a day-by-day breakdown
of the observed weather and the contestant’s forecasts
and associated penalty points. Only two forecasters are
shown here for brevity. These diagnostics are useful
for screening out the occasional data entry error and
for providing feedback to the students on the errors
they made with each forecast. The statistics are also
useful for verifying the weekly skill numbers in section
A of Fig. 1. For example, the persistence precipitation
forecast accumulated 800 (=0 + 200 + 100 + 200
+ 300) error points, and the forecaster “Hockey Puck”
accumulated 349 (= 33 + 140 + 50 + 33 + 93) error
points. Thus, using (5), Hockey Puck’s weekly precip-
itation forecast skill is 100% (349 — 800)/(0 — 800)
= 56.4%.

Note the formulation of the contest in skill scores
tallied by week and semester to date may result in the
overall skill being quite different than an equal weight-
ing of the weekly skills. For example, a week with much
precipitation that varies in amount day to day will yield
many penalty points for persistence forecasts, often
more points than are tallied during 2 or 3 relatively
dry weeks. Hence, the overall forecast skill relative to
persistence is more strongly determined during variable
weather patterns than during quiescent ones.

3. Analysis of contest results
a. Temperature forecasts

The most interesting aspect of this university contest
was the use of credible intervals for temperature fore-
casts. Little has been documented specifically on the
use of these fixed probability credible intervals. Peter-
son et al. (1972) documented a procedure for training
forecasters to set their intervals. Murphy and Winkler
(1974) documented a forecast experiment in Denver,
Colorado, using credible intervals. The most complete
study (WM79) described an experiment conducted
over a 9-month period using experienced National
Weather Service forecasters in Milwaukee, Wisconson.
These forecaster’s 50% central credible interval widths
exhibited a correlation of +0.35 with the forecast errors
(the absolute difference between the interval’s center
and the verification temperature ). Positive correlations
can indicate the ability of the forecaster to assess un-
certainty. However, the extent to which this correlation
can be accounted for by seasonal changes in predict-
ability rather than day-to-day changes was not clear.
(Climatologically, temperatures tend to be more vari-
able in winter than in summer.) Thus, an interesting
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question is whether forecasters show ability to accu-
rately set intervals day to day, as opposed to season to
season. While interval widths may vary from season
to season, we presume that the day-to-day variations
in interval widths are of greater interest to the forecaster
and forecast user. The potential economic benefits from
such daily “forecasts of forecast uncertainty” are de-
tailed in Wilks and Hamill (1995).

Concentrating on the intervals set by the top three
forecasters in the Cornell contest (as shown in Fig. 1)
indicates that the interval widths were set properly in
aggregate. Overall, to be consistent with a 50% credible
interval, 25% of the verifying observations should fall
below the lower limit, 50% between the lower and upper
limits, and 25% above the upper limit. For maximum
temperatures, the top three forecasters’ combined per-
centages were exactly 25-50-25 and for minimum
temperatures 35-52-13. The skewed minimum tem-
perature forecasts reflect deep snow cover in central
New York during 1994 and frequent radiational cool-
ing that often surprised contestants. '

Still, considering the intervals in aggregate does not
answer the question of whether forecasters accurately
set interval widths day to day, or, equivalently, whether
forecasters were successful at assessing forecast uncer-
tainty. The answer from this contest was a qualified
“no.” Overall, the top three contestants’ interval widths
for max temperature correlated with the errors at +0.03
and for min temperatures at +0.06. These low corre-
lations may be due to a number of factors. First, though'
the top three finishers in the contest all had forecast
experience, with a Ph.D., B.S., and M.S. in meteorol-
ogy, respectively, forecasting was not their full-time,
professional responsibility. Second, the contest lasted
only 13 weeks, and it takes time to become familiar
with any new forecasting concept. Still, even when
considered together as a consensus forecast, and con-
sidered without the results for the first 7 weeks (taken
as a learning period), the correlations were no higher.

Consider Fig. 2, a plot of forecast maximum tem-
perature intervals versus verification data for the fore-
caster “Capt. Ensemble,” the third-ranked contestant.
This contestant relied heavily on the variation in tem-
peratures in MOS forecasts to set the interval width.
This forecaster used Binghamton, New York, and Syr-
acuse, New York, MOS forecasts produced by the
Limited-Area Fine Mesh and Nested Grid Model
(NGM) on two successive runs, giving eight estimates
of max temperatures. Differences between the eta
(Black 1994) and NGM numerical output (FOUS)
were also considered. The rationale behind this forecast
strategy was to subjectively simulate an ensemble/
lagged average forecast (Hoffman and Kalnay 1983;
Tracton and Kalnay 1993). Thus, when MOS forecast
temperatures diverged widely from station to station
or between models or initialization times, a wider in-
terval was used. When there was substantial agreement,
a smaller interval was used. Some subjective judgment
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FI1G. 2. Max temperature forecast intervals plotted against verification temperatures
for the forecaster Capt. Ensemble. Temperatures in °F.

was also used by this forecaster. The correlation of in-
terval widths to error for this forecaster’s max temper-
atures was +0.03.

Of more theoretical interest than the specific contest
results are what they may imply about the higher cor-
relations observed in the Milwaukee experiment of
1979. A partial explanation might be that Milwaukee
forecasters were informed of and used information on
the typical temperature variability by season. Even if
Milwaukee forecasters were not consciously aware of
the seasonal effects of uncertainty, they may have used
it implicitly, generating larger intervals on average in
winter than in summer. Conversely, the Cornell con-

test, at 13 weeks in length, did not span a range of
seasons, and its contestants certainly were only vaguely
aware of the seasonal nature of uncertainty. Thus, de-
termining the magnitude of seasonal effects of forecast
variability is important; if automatically varying inter-
val widths slowly through the year may achieve nearly
the same positive correlation as forecasters varying
them day by day, then the optimistic Milwaukee results
must be interpreted with more caution. Further, it may
be more appropriate in any circumstance to measure
the magnitude of their observed correlation of interval
width and error relative to the baseline obtained using
climatological variances, as the prediction of midtro-
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FI1G. 3. Standard deviation of max and min temperatures around
a running 3-week mean, plotted against the week number. Data are
from Cornell University Game Farm Road, 1961-93. Vertical lines
denote beginning (week 4) and end (week 7) of the forecast contest.

pospheric flow is measured relative to the climatological
flow pattern using the anomaly correlation (Miyakoda
et al. 1972; Murphy and Epstein 1989).

Accordingly, seasonal effects of variability were ex-
amined both for Cornell and for Milwaukee. For Cor-
nell, using the record from 1961 to 1993, the standard
deviation of daily temperatures about a running 3-week
mean was calculated. The results are shown in Fig. 3.
As shown, the variability of min temperatures is highest
in midwinter and decreases quickly through the spring,
However, the variability of max temperatures remains
high through midspring. This contest took place from
week 4 to week 17, denoted with vertical lines in Fig,
3; thus, the figure suggests that if forecast intervals were
varied seasonally by an amount proportional to the
climatological variance, the max temperature intervals
would remain nearly constant throughout the contest,
but the min temperature intervals would decrease
sharply from the beginning to end.

To test the effect of using seasonally varying interval
widths, the contest was rerun from beginning to end
with climatology as a contestant. Fifty percent central
credible intervals were calculated using the weekly
mean temperatures and standard deviations and as-
suming a Gaussian distribution of errors about the cli-
matological mean. The results indicate the usefulness
of seasonal climatological variances in setting interval
widths. The max temperature interval widths were
correlated with the error at —0.09, the low correlation
consistent with the homogeneous climatological vari-
ance of max temperatures during the 13-week contest.
However, the min temperature interval widths were

WEATHER AND FORECASTING

VOLUME 10

correlated at +0.27, better than any of the contestants
and nearly to the level achieved by the Milwaukee
forecasters. (Note, however, that the skill of these fore-
casts was low because the forecast intervals were quite
wide.) This suggests a forecaster informed of the sea-
sonal variations might achieve the high correlation ob-
served in the Milwaukee experiment primarily through
climatological information, rather than day-to-day ad-
justments of interval width.

After examining the possible benefits of forecasting
intervals at Cornell based on climatological variances,
the Milwaukee observations were examined in the same
manner. Figure 4 is a plot of the standard deviations
of daily temperatures about a running 3-week mean
for Milwaukee using data from 1949 to 1993. Vertical
lines denote the end (July) and beginning (October)
of the experiment described in WM79. As shown, there
is a large annual cycle in the climatological standard
deviations of temperature. Noting this, climatological
50% credible interval forecasts were generated using
the observations from October 1974 to July 1975 (the
period for the experiment in WM79) in the same man-
ner as done with the Cornell data described above. The
interval widths were correlated with the absolute errors,
yielding a correlation of —0.16 for max temperatures
and +0.32 for min temperatures. The negative corre-
lation coefficient for the max was surprising; accord-
ingly, ranked (Spearman ) correlation coefficients were
also calculated since these would be more insensitive
to outliers. The Spearman correlation coefficients were
+0.16 for max temperatures and +0.27 for minimum
temperatures, indicating that a few outliers skewed the
product~moment correlation. Nonetheless, overall cli-
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FiG. 4. Same as Fig. 3 but for Milwaukee data, using the period
1949-93. Vertical lines denote the beginning (week 39) and end (week
30) of the experiment.
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matologically based correlations were all observed to
be less than the Milwaukee forecasters’ +0.35.

Another more appropriate test of the seasonal effects
may be to use temperatures and their annual error
variability from actual forecasts rather than from cli-
matological information. Accordingly, NWS objective
(Klein et al. 1959; Glahn and Lowry 1972) and sub-
jective point max and min temperature forecasts for
Milwaukee were obtained for the period January 1972-
December 1976. A regression model was developed
from this training data to predict interval widths, which
varied seasonally. The regression model was developed
using all available observations and forecasts in this
dataset except those in the period of the experiment,
from October 1974 to July 1975. This regression model
used a one-harmonic expansion for minimum tem-
peratures and a two-harmonic expansion for maximum
temperatures. Use of a two-harmonic expansion
yielded a better fit, consistent with the higher-frequency
variations observed in the Milwaukee climatology (Fig.
4). The results from this experiment are summarized
in Table 2. As shown, the observed correlations are
stratified by lead time, by forecast cycle, and by whether
the forecast was objective or subjective. Generally, the
observed correlation coefficients are one-half to two-
thirds of the magnitude quoted in WM79. Thus, the
annual cycle of temperature variability may have con-
tributed significantly to Milwaukee forecasters’ ability
to set reliable interval widths but did not account for
all of the observed correlation.

The Cornell forecast contest itself was a convenient
vehicle for further testing of seasonal effects. After the
initially pessimistic results obtained during the first se-
mester, a prototype scheme was developed for the next
semester of the contest, conducted during the fall of
1994. This scheme automated the prediction of forecast
intervals based on available local NGM MOS. The op-
erating hypothesis in developing this scheme was that
three factors could have contributed to uncertainty and
could be observed in the objective MOS forecasts for
nearby Binghamton (BGM) and Syracuse (SYR). The
first was the seasonal nature of uncertainty, as discussed
earlier. The second factor was initial condition uncer-
tainty, which could be reflected in cycle-to-cycle dif-
ferences in MOS forecasts. This is the basis of “lagged
average forecasting” (Hoffman and Kalnay 1983),
more commonly applied to forecasts of longer duration.
A last hypothesized effect was the magnitude of at-
mospheric baroclinicity, as measured by differences in
MOS temperatures between BGM and SYR, with sys-
tematic corrections for each to match the Cornell Game
Farm Road climatology. In developing a simple
regression equation to predict temperature forecast
uncertainty, the second and third effects were com-
bined. For both max and min forecasts, the most cur-
rent 1200 UTC and 0000 UTC NGM MOS forecasts
of max and min at BGM and SYR were used (i.e., the
36-h max forecast from the 1200 UTC run and the
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48-h max from the 0000 UTC run). These forecasts
were adjusted for local yearly average temperature dif-
ferences between the Cornell Game Farm Road and
BGM or SYR (using 1990-91 MOS data). Next, a
mean Cornell Game Farm Road forecast max and min
were predicted from a weighted average of the adjusted
BGM and SYR data according to

TGF = OISTOOB + 0.15T0()s + 0.35T123 + 0.35T125,

(6)
with “GF” indicating the predicted temperature at the
Cornell Game Farm Road and the subscripts for terms
on the right-hand side indicating the forecast cycle and
BGM (B) or SYR (S). Lower weights were given to
older data, consistent with the error and the cycle-to-
cycle covariance. Next, a measure of the variability
from cycle to cycle and from of each of the four in-
dividual forecasts from this mean were diagnosed as a
weighted sample standard deviation according to

sor = {[0.15(Toos — Tcr)?
+0.15(Toos — Tar)?
+ 0.35(T 128 — Tar)?
4+ 0.35(T 25 — To)}371} 2 (7)

Finally, a regression equation was developed to predict
the forecast rms error, and thereby the interval width,
based on a one-harmonic expansion of the day of the
year and sgr. Using 1991-92 as training data, the
regression results indicated that for min temperatures,
Sgr Was not a significant predictor of the error and was
thus left out of the predictive equation, but this term
was a significant predictor for the max temperatures
though the assigned weight was small.

The ability of this scheme to predict uncertainty here
was mixed. This scheme produced the second-highest
skill in temperature forecasts of the 28 contestants par-
ticipating during the fall semester of 1994. For mini-
mum temperatures, this scheme’s observed correlation
during the second semester of the contest was +0.35,
as high as in the Milwaukee experiment and despite
the fact that the only predictor was the first harmonic
of the day of the year. However, for max temperatures,
the observed correlation was —0.14, worse than if uni-
form intervals were used. Upon analysis, it appeared
that intervals for maximum temperatures were set too
widely late in the semester. The predicted intervals for
both max and min increased throughout the fall, from
an average of 6° at the beginning of the contest to 8°
at the end. For minimum temperatures, overall, the
percentage of forecasts below /within/above the cred-
ible intervals were 22-53-25, consistent with the def-
inition of a 50% credible interval. However, for the
maximum temperature forecasts, the allocation was
18-65-17.

Because of the small sample size of the contest and
of the dataset for training the regression model, these
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TABLE 2. Correlations of climatologically derived interval widths
and forecast absolute errors for objective and subjective temperature
forecasts at Milwaukee for the period October 1974-July 1975.
Forecasts are stratified by lead time, by objective/subjective, and by
forecast cycle.

12-24 h 24-36 h 36-48 h
0000 UTC (Objective) 0.28 0.21 0.15
0000 UTC (Subjective) 0.29 0.16 0.22
1200 UTC (Objective) 0.20 0.24 0.21
1200 UTC (Subjective) 0.10 0.22 0.16

results alone are not conclusive. However, along with
analysis of the Milwaukee forecasts and the Milwaukee
and Cornell climatologies, seasonal forecast uncertainty
is clearly an important factor. Though forecasters in
the Milwaukee experiment evaluated intervals day by
day, results suggest the observed correlation might
nearly have been matched simply by judicious use of
the error climatology. The implications of this will be
discussed in section 4.

b. Precipitation forecasts

Participants from semester 1 of the Cornell contest
uniformly showed skill in allocating probability across
precipitation categories relative to persistence forecasts.
For example (as shown in Fig. 1, output from week
12 of the forecast contest), all of the top contes-
tants’ precipitation skill for the semester to date ex-
ceeded 50%.

The skill scores alone do not present a complete pic-
ture, however. Another informative diagnostic is a
comparison between the average forecast distribution
and the sample climatological distribution of precipi-
tation during the contest. The correspondence between
these relates to the bias, or “reliability in the large,” of
the forecasts. These results are presented in Table 3 for
the top three forecasters and two automated schemes,
one based on the Binghamton and Syracuse MOS and
the other a blend of persistence and climatology. The
difference between actual relative frequency and av-
erage forecast probability is rather small for most cat-
egories, though all forecasters underforecast the relative
frequency of the category 6 events (=1.0"). To some
degree, this underforecasting results from the require-
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ment that probabilities be rounded to the nearest 10%.
However, the underforecast of category 6 was primarily
due to one storm (2-3 March 1994) in which fore-
casters uniformly followed model guidance, which se-
verely underforecast snow amounts (over 20 in. fell
when 7 in. were predicted).

Another interesting question is whether the spread
of precipitation forecasts is positively correlated with
the probability-weighted absolute error of the precip-
itation forecast. For example, is the error between the
average forecast category and the verification category
higher on a day when the forecaster issues a widely
distributed forecast (e.g., 2-2-3-2-1-0) versus a more
specific forecast (e.g., 0-8-2-0-0-0)? If so, this would
indicate proficiency in determining the uncertainty of
the forecast situation. Accordingly, the forecasts of the
top three contestants were examined in this way, cor-
relating the standard deviation of the precipitation
forecasts to their absolute errors of the verification cat-
egory minus the mean forecast. The results indicate
better success than with temperatures. The top three
forecasters’ correlations were +0.49, +0.52, and +0.59,
respectively. The rank (Spearman) correlations were
+0.75, +0.62, and +0.73, respectively. A scatterplot
of the absolute error versus the standard deviation of
the forecast is shown for the third-ranked forecaster,
Capt. Ensemble, in Fig. 5.

The higher correlations for precipitation might have
been expected. Though a notable failure was indicated
earlier for the 2-3 March 1994 snowstorm, these days
composed a small part of the full sample. Overall, there
were many days when forecasters were quite confident
in their forecasts for no precipitation and issued a 10—
0-0-0-0-0 forecast, which usually verified accordingly.
Analysis of an experiment in probabilistic quantitative
precipitation forecasting by NWS personnel (Murphy
et al. 1985) and MOS (Murphy et al. 1985; Wilks 1990)
indicated that much of the forecast skill resided in the
probability for the 0.0-trace category, that is, in the
POP forecast. Also, the observed high correlation may
also be accounted for by accurate assessments of un-
certainty by season or by regime. Forecasters under-
stand that summertime forecasts are often more vari-
able due to the convective, hit-or-miss nature of
precipitation and typically issue less concentrated fore-
casts.

TABLE 3. A comparison of the distributions of precipitation forecast probabilities over the duration of the contest for the top three
forecasters and the two automated schemes compared to the verifying relative frequencies.

Precipitation category (j) 0.0 in.-trace 0.01-0.09 in. 0.10-0.24 in. 0.25-0.49 in. 0.50-0.99 in. >1.0in.
Verification 55.5% 17.5% 11.1% 6.3% 6.3% 3.2%
ART2D2 50.3% 23.6% 14.1% 7.3% 4.0% 0.6%
Dogbert 50.3% 20.9% 14.3% 7.7% 5.7% 2.5%
Capt. Ensemble 52.4% 21.5% 12.4% 7.6% 4.6% 1.4%
MOScaster 54.0% 24.1% 10.7% 10.0% 7.9% 0.0%
Stocaster 50.6% 24.4% 13.4% 7.7% 3.6% 0.0%
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FIG. 5. Scatterplot of the absolute error of precipitation forecasts plotted against the standard deviation
of the forecasts. Data are from forecasts generated by the contestant Capt. Ensemble.

An inaccurate assessment of the uncertainty of an
ordinary event, however, is certainly much less im-
portant to the forecast user than assessments for large
precipitation events. Thus, the two badly missed fore-
casts for 2-3 March did not dramatically affect the cor-
relation coeflicient, but they would have been promi-
nent failures in the mind of a forecast user.

4. Discussion

The analysis in section 3 focused primarily on com-
parisons between the Milwaukee experiment, con-
ducted with NWS forecasters, and the Cornell Uni-
versity experiment, conducted with student, faculty,
and staff contestants. The higher correlation between
interval width and forecast error observed with Mil-
waukee forecasters is likely due to the different level
of experience but may also be due to the shorter du-
ration of the Cornell contest, which masks seasonal
effects. Two implications emerge from this analysis.
First, though it is easy to learn the rudiments of cor-
rectly forecasting the most likely weather outcome,
quantifying uncertainty in possible outcomes is much
more difficult. Second, since the seasonal effects are
large, the ability to assess forecast skill day to day may
be less pronounced than previously believed. The Mil-
waukee experiment exhibited a correlation of interval
width and absolute error of 4+0.35. If compared against
a climatological baseline, with correlations of approx-
imately +0.20, the success appears less impressive. This
certainly does not invalidate the concept of nor the
need for probabilistic forecasts. Rather, it highlights
the necessity of training and research into ways to assess
forecast uncertainty.

a. Subjectively evaluating uncertainty

Peterson et al. (1972) detailed one method for train-
ing forecasters to set central credible intervals; more
recent literature on the subject is available in Murphy
(1985, pp. 353-356) and Clemen (1991, Chap. 8). To
set the credible intervals, the forecaster first decides
which temperature T s is equally likely to have a ver-
ifying temperature above or below it. This is the median
of the forecaster’s subjective probability distribution.
Using this temperature, the forecaster next selects a
temperature 7,5, which is equally likely to have the
verifying temperature below it and between it and T s.
This temperature is the lower bound of the 50% credible
interval. In the same way, the forecaster next evaluates
Ty 75, the upper bound of the 50% central credible in-
terval.

Developing a realistic subjective distribution of
weather event probabilities (and thereby credible in-
tervals) is probably learned over time through day-in,
day-out exposure to different forecast situations. Over
the long term, a forecaster can develop a mental data-
base of the reliability or unreliability of a model’s per-
formance under varying weather patterns. Further, an
experienced forecaster may be better able to understand
the implications of discrepancies between data sources,
such as satellite or radar data indicating a deviation
from the short-term model forecast. These considera-
tions may partly explain the lower correlation of in-
terval widths to error for the contestants in this forecast
compared with the NWS forecasters studied by WM79.
Additionally, experienced forecasters may have an un-
derstanding of the synoptic climatology of uncertainty.
The presence of a strong baroclinic zone over the area
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or upstream may trigger a lack of confidence in a spe-
cific forecast. Further, perhaps an experienced fore-
caster looks for variability in humidity, boundary layer
temperatures, or precipitation amount from model to
model or from cycle to cycle as useful diagnostics of
uncertainty.

All of the above may be tenable hypotheses, yet there
has been little or no objective testing to validate most
of these rules; thus, “experience” may reflect the use
of both valid rules and invalid rules the forecaster thinks
are valid. For example, some of the more experienced
Cornell contestants used the differences in predicted
precipitation between the eta and NGM models to as-
sess the spread of probabilities to assign to their pre-
cipitation forecast. The rule of thumb was that consis-
tency between model runs implied high forecast con-
fidence, and vice versa. However, for the 2-3 March
1994 snowstorm, snowfall was underpredicted in both
the eta model and NGM during all cycles. Thus, this
particular rule did not work when needed most, and
the extent of its validity is unknown.

b. Objectively evaluating uncertainty

If there are indeed forecast users who would benefit
from accurate quantitative assessments of uncertainty
day by day, then the objective evaluation of uncertainty
is a legitimate area for research. This research couild
take at least two paths. First, one could test the validity
of the rules of thumb developed by experienced fore-
casters, evaluating, for example, the validity of assessing
uncertainty from differences between model forecasts.
To the extent that these rules are synoptically general
and not specific to one locale, such research would
benefit new forecasters, helping them quickly build the
missing experience base. There is an extensive literature
on the error characteristics of particular forecast mod-
els, which may help forecasters evaluate their confi-
dence in a particular model realization. However, as
forecast models improve, systematic errors are de-
creasing, and forecast model errors are increasingly at-
tributable to random errors, that is, sensitive depen-
dence on initial conditions (Reynolds et al. 1994).
Thus, long-term experience with a new model such as
the eta model may not be as profitable as with previous
models.

The second area of research likely to be of use is
stochastic-dynamic prediction, or more specifically
here, ensemble forecasting applied to the short range.
With ensemble forecasts, multiple forecasts are run
from the same model with slightly different initial con-
ditions. Alternative initial conditions are generated to
produce divergent forecasts, yet, which are dynamically
consistent and physically plausible considering the ob-
servations. Ensemble forecasts are useful, first, because
the mean of an ensemble of forecasts is typically more
skillful than the majority of its members (Toth and
Kalnay 1993). Further, the variance among ensemble
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members has been shown to be correlated to forecast
uncertainty (Palmer 1994). Consider a particular day
when the local evolution of the forecast is very sensitive
to specific small perturbations in the initial conditions.
The ensemble will consist of a collection of very dis-
similar weather forecasts, and such a day will present
a more uncertain forecasting situation. Conversely, if
another day’s forecast evolution is less sensitively de-
pendent on the initial condition, then its ensemble
spread will likely be smaller and the forecast uncertainty
lower. Perhaps a short-range ensemble forecast (Brooks
and Doswell 1993) will aid in defining the probability
of damaging weather. For example, should one-third
of the forecasts in an ensemble predict a heavy snow
event, this may indicate a greater likelihood for that
event than if one-tenth of the members make this pre-
diction. Recently, Mullen and Baumhefner (1994)
demonstrated the utility of the ensemble methodology
in making short-range forecasts of explosive cyclogen-
esis, though that study concentrated on errors in the
position and intensity of the cyclone rather than the
sensible surface weather.

5. Conclusions

This paper has described a probability-based forecast
contest conducted at Cornell University during the
spring semester of 1994. The interesting aspect of this
contest relative to other forecast contests around the
United States was the inclusion of probabilistic tem-
perature forecasts using central credible intervals.
Forecasters showed little success in assessing the day-
to-day uncertainty in temperature forecasts, as mea-
sured by the correlation of credible interval width to
absolute error. This result is in contrast to WM?79,
where professional NWS forecasters’ temperature in-
tervals were positively correlated with forecast. Several
factors, including the shorter length of the Cornell con-
test and inexperience of the forecasters, could account
for the lower correlation. However, it was demonstrated
that more than half of the observed correlation in the
Milwaukee experiment of WM79 could be accounted
for by the seasonal nature of forecast variability, even
if forecasters were not explicitly accounting for this.
Thus, results of this forecast contest suggest that short-
term forecast uncertainty may be more difficult to
evaluate day to day than previously believed, even for
experienced forecasters.

Explicit guidance on assessing the uncertainty in-
herent in different forecast situations will certainly be
useful. Ideally, rather than relying only on forecast ex-
perience, it would be desirable to also develop and test
objective methodologies for estimating uncertainty.
There are at least two fruitful areas of research. First,
rules of thumb of experienced forecasters could be val-
idated, determining the true usefulness of currently
uncodified subjective algorithms for assessing uncer-
tainty. A second method is the application of short-
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range ensemble forecast technology. For probabilistic
ensemble forecasting to be successful, days when the
ensemble exhibits widely divergent forecasts locally
should have greater forecast error on average than for
days with more homogeneous ensemble forecasts.
Short-range ensemble forecasting is still in the research
stage; however, the technology appears very promising
given the dramatic improvements made in medium-
range forecasting with ensembles.

Despite the limited success of our contestants’ prob-
abilistic temperature forecasts, such forecasts would be
valuable to and are desired by many weather forecast
users. Fixed-probability temperature interval forecasts
can be implemented by operational forecasters trans-
parently, since the publicly issued product is simply a
temperature range. Thus, we encourage others to ex-
periment in making such forecasts. With time, docu-
mentation, and training, forecasters will undoubtedly
develop the expertise to set intervals more accurately.
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